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Abstract

This paper presents a nonlinear model predictive controller (NMPC)
coupled with a pre-trained reinforcement learning (RL) model that
can be applied to lateral control tasks for autonomous vehicles. The
past few years have seen opulent breakthroughs in applying
reinforcement learning to quadruped, biped, and robot arm motion
control; while these research extend the frontiers of artificial
intelligence and robotics, control policy governed by reinforcement
learning along can hardly guarantee the safety and robustness
imperative to the technologies in our daily life because the amount of
experience needed to train a RL model oftentimes makes training in
simulation the only candidate, which leads to the long-standing
sim-to-real gap problem–This forbids the autonomous vehicles to
harness RL’s ability to optimize a driving policy by searching in a
high-dimensional state space. The problem of robustness and
constraints satisfaction can be alleviated by using NMPC technique
which has proved itself in various industrial control tasks; however,
traditional NMPC usually uses one fixed set of parameter matrices in
its cost function while the changing path-tracking conditions faced by
an autonomous vehicle may require the optimizer to place varying
emphasis on different terms of the objective. Therefore, we propose to
use a RL model to dynamically select the weights of the NMPC
objective function while performing real-time lateral control of the
autonomous vehicle (we call this RL-NMPC). The RL weight-search
model is trained in a simulator using only one reference path, and is
validated first in a simulation environment and then on a real Lincoln
MKZ vehicle; the RL-NMPC achieved considerably better
performance in lateral tracking during simulation and on-board tests.

Introduction

Autonomous driving (AD) has been one of the most attractive areas in
both the automotive industry and academia. In this paper, we devote
our attention to the lateral control stack inside the AD system, where
the controller receives a pre-computed reference trajectory from the
upper stream perception and planning modules, and then proceeds to
solve for an optimal steering angle that minimizes the lateral error
between the vehicle and the desired path while ensuring a smooth
overall trajectory. The control module takes on the responsibility of
making the autonomous vehicle stay on a safe path while cleaving to
human-like driving behavior–this requires the lateral controller to be
both accurate and robust when given a wide range of reference paths
in different traffic situations, including cruising, turning, or lane
changing–the immense cost of safety breach in an AD system makes
it imperative for automotive practitioners and researchers to keep on
searching for more stable and capable lateral control schemes.

Reinforcement learning (RL) has succeeded magnificently in
generating capable and robust control policy for complex robotic
systems governed by nonlinear dynamics–such as the Unitree A1
robot dog that can traverse diverse terrains relying solely on the
low-level commands given by the deep RL model based on
multi-modal transformers [1, 2]; the robot hand trained using
model-based RL with the level of dexterity that enables it to play two
Baoding balls single-handedly [3]; and the spectacular success of the
auto-racing quadrotor Swift developed in [4] that beats human drone
racing world champions while being controlled by deep RL model
alone. However, these dazzling breakthroughs do not always transfer
to real-world applications because of the famous sim-to-real problem
in RL, where an RL agent trained in simulated environment fails in
real-world scenarios due to reasons like: 1) the agent has not been
trained for that experience because of the state-space complexity; 2)
the modeling error in the training simulator (a problem especially
prevalent in vehicle simulator where a tire or friction model with
perfect fidelity is impossible) is reflected in the irrational behaviors of
the agent in real world [5]. Recently, there has been attempt to create
end-to-end large-scale deep learning models that map the sensory data
on the autonomous vehicle directly to control commands [UniAD,
Tesla], but a notable shortcoming for these effort is that the large
neural network models similar to GPT and BERT require too much
data to train [6, 7] with computational power not accessible by most
automotive manufacturers, and even the data needed to train such a
model requires considerable labor to prune and label in order to be
training-fit. This motivates us to consider alternatives–can RL build
upon other traditional control techniques, and thereby obtain lower
bound performance while enhancing their capabilities?

Model predictive control (MPC) is a good candidate. It is a
conventional control technique that precedes the blooming of RL in
recent years and, similar to its artificial intelligence counterpart, has
been successful in many applications such as controlling autonomous
vehicle (both ground and aerial) [8, 9, 10, 11, 12, 13], and all the way
from controlling CNC end effector, where the agent’s goal is tracking
a predetermined trajectory, to optimize power electronics system such
as power converter, electrical drives, and static synchronous
compensators (STAT-COMs) [5, 14, 15, 16, 17]. MPC is a special
case of optimal control that solves an optimization problem
constrained by the plant’s dynamics, where the solution would usually
contain a sequence of control input, with a predefined length (also
referred to as horizon); more implementation details will be presented
in the methodology section.

In this paper, we propose to improve the lateral tracking performance
of the nonlinear MPC by combining it with a pre-trained RL model
whose core function is to dynamically assign the weight matrices in
the MPC’s cost function. The goal is to adapt the lateral controller to
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path of different shapes, and one way to achieve this is by controlling
how much weight is put on each of the cost function terms–the
dynamic selection of weight matrices can be characterized as a
Markov Decision Process (MDP); therefore, the search for an optimal
selection policy can be done by employing RL technique, where the
policy is represented by a multi-layer perceptron (MLP), and objective
of the RL training is to maximize the expected reward obtained by this
policy. We demonstrated in both simulation and on-board experiments
that the use of RL weight selection improves lateral tracking
performance of the controller considerably. The RL algorithms
applied, the design of the nonlinear MPC, and the structure of our
deep reinforcement learning pipeline are discussed in more detail in
the methodology section; and we report the testing result in both
simulation and the real Lincoln MKZ vehicle in the result section.

Related Works

Deep Reinforcement Learning (DRL) Although DRL has attained
great success in various robotics control tasks [1, 2, 3, 4], it has yet to
realize its potential in controlling autonomous vehicles (AVs). As
opposed to autonomous driving that requires an extremely robust
controller that can map any sensory data to safe control input
(steering, throttle, etc.), the world-champion level auto-racing drone
developed in [4] only needs to operate under a constant
environment–the racing tracks–thus demanding re-training of the
DRL model for different racing settings. The pioneering effort to rely
only on DRL techniques to control an autonomous vehicle comes
from Alex et al. [18], where they employed the classic DRL algorithm
DDPG [19] to train the autonomous vehicle to complete lane
following task under an hour using only on-board computation power,
with the input to the RL controller being a single monocular image,
and output being steering angle plus speed setpoint. Jianyu takes the
performance one step further in [20] by reducing the high-dimensional
perception input to low-dimension bird-view representation before the
RL algorithm is applied so that the training can cover a larger portion
of the observation space, allowing the vehicle to cope with more
complex traffic scenarios. The scenario of merging and negotiating in
dense traffic is taken on by Dhruv et al. [21], where they applied
model-free reinforcement learning network to train a policy that can
open up gap in dense traffic while maneuvering with comfort; [21]
achieves higher merging success rate than naive MPC, and is robust
against the vehicle distributions on the road. Multi-agent RL (MARL)
is also gaining interests among researchers because it gives insight
about how autonomous vehicles interact with each other when one
agent does not know the intention of those around it–this translates to
AVs operating in dense traffics where other agents are controlled by
human drivers; recent work [22] have tried transferring driving policy
trained by MARL techniques in simulation to real-world execution. In
summary, much of the labor is spent on reducing the dimensionality
of the observation space so as to better generalize the trained policy
but the DRL control schemes still tend to be restricted in simulated
environment [19, 20, 21, 23, 24, 25] because of the tight safety
constraints and extremely diverse real-world driving environment.

Learning-based MPC Model predictive control (MPC) can be
viewed as akin to reinforcement learning in that they both seek to
either maximize or minimize an objective function–for RL, the goal is
to maximize the expected return over an entire trajectory characterized
by Markov property and performs policy update iteratively guided by
the reward received from executing an action in current state. For
MPC, it is solving an oftentimes nonlinear optimization problem
constrained by the system’s dynamics model (thus the name
“model”). The advantage of MPC is that it guarantees to satisfy hard
constraints on the result, but its performance is largely dependent on
its cost function design and the accuracy of system dynamics
modeling. Researchers at ETH are able to enhance the lap time of
their AMZ Driverless race car by performing Gaussian Process (GP)
regression on-line to account for the residual model uncertainty in the
MPC [26]. Ostafew et al. [27] proposed a robust MPC while
incorporating a GP learned in real-time, allowing the mobile robot to
work at its capability limits while staying within safety constraints.

Another insight to interactions between learning and MPC is to utilize
the cost function as a value function approximator within RL because
the researchers found that economic NMPC can find optimal solutions
after modification even if it has no access to accurate dynamics
modeling [28]. The nominal work done by Bhardwaj et al. [29]
developed an algorithm named MPQ(λ) that blends RL approximated
cost function with the original MPC cost function, enabling the
controller, when using faulty system dynamics, to achieve comparable
performance to MPC using privileged dynamics model. Alternatively,
G. Williams et al. choose to use model-based reinforcement learning
to approximate the model dynamics, thereby generalizing model
predictive path integral (MPPI, a subset of MPC methods) to systems
with non-control-affine dynamics. Chen et al.’s work on using RL to
determine the optimal triggering frequency provides another insight
into lowering the computation cost of MPC [30].

Previous works either seek to create an end-to-end controller that
maps observations available to the control signals for the autonomous
vehicles, or try to amend the dynamics model using learning
techniques; however, end-to-end controller based on RL is notoriously
difficult to construct, and improving the model errors also requires the
practitioners to be expert in both control and learning theory in order
to correctly interpret the model error and apply learning methods
appropriately. To get the best of both worlds, we propose to improve
the nonlinear MPC performance by tuning the cost function
parameters using model-free RL algorithms which have proven itself
in complex optimization tasks. We use the cost function weight
matrices as a handle to steer the performance of the MPC; therefore,
the problem becomes searching for a set of optimal weight matrices
everytime the MPC is invoked so that it obtains best performance, and
this process can be modeled as a Markov Decision Process (MDP),
where the task of the RL pipeline is to find a mapping from a state
composed of vehicle states and MPC parameters to a set of weight
matrices that maximize the reward–the tracking error and driving
smoothness–at each time step. Using RL in hyperparameter tuning
has precedents in the field of computer vision [31], where the
hyperparameters used for object tracking algorithm is treated as a
Deep Q-learning agent; and a similar work is conducted in [32]; both
works report that modeling the tuning as a MDP and apply RL to fit
for an optimal policy achieves better performance than the
state-of-the-art methods; our work seeks to extend this technique to
the improvement of nonlinear MPC.

Method

The Deep RL algorithms The MPC parameter search problem can
be formulated as a finite-horizon Markov Decision Process (MDP)
defined by M = (S, A, T, r), where S represents the state space of the
agent, A its action space, T its transition dynamics, and r the reward
corresponding to each state the agent is in. The goal of RL is to find
the optimal policy θ∗ such that [33]:

θ∗ = arg max
θ

T∑
t=1

E(st,at)∼pθ(st,at)[r(st, at)] (1)

which means the optimal policy should maximize the sum of expected
return r at state s taking action a (the pθ represents the learned
transition model of the MDP that’s embedded in the learned policy).
The deep RL algorithms use Deep Neural Network (DNN) as the
decision making policy pθ , or πθ , and as approximation for the
expected return, or value function, (characterized by the sum in Eqn.
1). Three following algorithms are tried to solve the search problem:
Deep Deterministic Policy Gradient (DDPG) [34], Twin Delayed
Deep Deterministic Policy Gradient (TD3) [35], and Proximal Policy
Optimization (PPO) [36]. PPO belongs to Policy Gradient method
which performs gradient descent directly on the expected return
objective in Eqn. 1, and PPO seeks to perform the gradient descent in
policy space, using a step size by either constraining the
KL-divergence DKL(πold ∥ πnew) between the old and updated
policy or simply clip the magnitude of the gradient, thereby avoiding
too-large or too-small update each step[DRL book]. Similarly, DDPG
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and TD3 belong to the combination of Policy Gradient and
Actor-critic methods; actor-critic framework generally consists of two
DNNs, one named actor network in charge of choosing the agent’s
next action, and the other named critic network that assigns
performance score (value function) for the action. The two DNNs
learn simultaneously so that the critic network can give an
increasingly more accurate score for the actor network’s output, and
the actor network improves by maximizing the critic’s score-more
concretely, critic network seeks to minimize the TD error [33]:

JV πθ
ψ

(ψ) =
1

2
(

i+L−1∑
t=i

γt−iRt + γLV
πθ
ψ (Si+1)− V

πθ
ψ (Si))

2 (2)

while the actor network seeks to maximize [33]

Jθ =
∑
t

log πθ(At|St)(Rt + γV
πθ
ψ (St+1)− V

πθ
ψ (St)) (3)

DDPG uses DNN as policy which makes it compatible with
continuous state and action spaces; TD3 builds on DDPG by adding
in clipped double q-learning, target policy smoothing, delayed policy
update to make the training more stable with quicker convergence and
less sensitive to hyper-parameter settings. The three algorithms are
chosen have been validated in many demanding control tasks [1, 2, 4]
and are recognized because of their training stability, convergence
speed, and exploration-exploitation balance.

Vehicle Model The lateral controller in this paper adopts the bicycle
model [37], which is shown to perform adequately in previous
on-board validations [38]. The following quantities are needed:
x = [px py ϕ]

T where pxpy are the x y positions of the vehicle’s
Center of Gravity (CG) in the world frame; the time derivative of x:
ẋ = [ṗx ṗy ϕ̇]

T ; Lxr and Lxf , the distances from CG to vehicle rear
and frontal axles; uf and ur , the front and rear wheel steering angle,
respectively (ur = 0 for conventional front-steering vehicles); and
finally, β, the slip angle, calculated by

β = arctan(
Lxr tan(uf )

Lxr + Lxf
) (4)

The bicycle model is given below:

ṗx = V cos (ϕ + β)

ṗy = V sin (ϕ + β)

ϕ̇ =
V cosβ

Lxf + Lxr
(tan(uf )− tan(ur) (5)

MPC Cost Function The model predictive control (MPC) scheme
seeks a set of optimal solution {(x1, u1), (x2, u2), ..., (xH , uH)} by
optimizing over a cost function constrained by the system’s dynamics
model (Eqn. 5).

min
x, u
J(x, u) =

H∑
t=1

(x(t)− xd(t))
TQ(x(t)− xd(t))

+u(t)TKu(t) + (∆u(t))TP(∆u(t))

subject to:
xt+1 = xt + f (xt, ut)δt

g(x) ≤ 0 (6)

where x represents the system state and u the control input; in this
paper, system state is the state of the vehicle under control, and the
control input is the steering angle, and H denotes the control horizon,
e.g. the overall length of the prediction. Q, K, P ∈ Rd×d are square

Figure 1: The training cycle for the RL weight search module. The output of the
RL are a set of matrices (or scalars) that is used in the cost function of the MPC;
the solution of the MPC (steering angle ut) is then executed in the simulator;
and the simulator returns the observations of the environment and calculated
reward r to the RL module which is updated using the information feedback
from the simulator.

diagonal matrices that assign weight to each of the term in the cost
function; the higher the weight for that term, the impact of that term
will be more prominent in the final solution; for example, let P’s
diagonal entries have a non-zero value, and Q, K be zero matrices;
then the resulting solution will only fulfill the requirement of the last
term containing matrix P where the adjacent control inputs will have
minimum difference but the solution does not minimize the first and
second term of the cost function. The f (xt, ut) is the vehicle
dynamics model defined by (5), and g(x) includes all the inequalities
constraining the vehicle states and control inputs. The goal of the RL
pipeline is to choose the three weight matrices dynamically in real
time so that the MPC can adapt to path segments of various shapes;
for example, if the road ahead is straight-line, the first
waypoint-tracking term should not take the highest weight, while the
second and third term representing the steering smoothness should be
the most important in making the vehicle cruising stable and
comfortable instead of control inputs that result in zig-zag path of the
vehicle due to the path-tracking term.

Training Framework The training for the RL weight matrices search
(later referred to as RL pipeline for brevity) pipeline (figure 1) is done
in a custom-built simulator in Robot Operating System (ROS), where
the maps are built by recorded GPS coordinates of real-world roads.
ROS is used mainly for visualization purposes and all the physics
simulation (e.g. vehicle dynamics) can be wrapped in one script,
boosting the training efficiency by avoiding the message publishing
and subscribing mechanism inherent to ROS. Since the RL pipeline is
only responsible for optimizing the lateral control of the autonomous
vehicle, we choose to assign a constant longitudinal velocity for the
vehicle in every lap it traverses (design choices will be discussed in
further detail). During each time step of the training, the MPC sends
the steering signal ut to the vehicle, whose states st+1 are then
updated using the vehicle dynamics model, after which the reward r
for the steering signal ut is calculated; the collected observations and
the reward are then be sent to the RL module, based on which the RL
weight search module is updated.

RL Input and Reward Design The input space, or the state space of
the RL agent, consists of the following components:

st = (et, ϕt, v
t
x, v

t
y, ϕ̇t, param(C))

where et represents the lateral tracking error of the vehicle at time t;
ϕt is the yaw angle; vtx and vty are the x and y component vehicle
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velocity in world frame; ϕ̇t is the yaw rate at that instant; and the last
term param(C) is a vector with the coefficients of a polynomial curve
that fits the coming segment of waypoints, which serves as a prompt
for the RL algorithm that encodes the shape of the vehicle path,
resembling human vision that provides look-ahead information for the
human drivers to modify their driving decisions. One important
consideration in determining the state space of the RL agent is its
dimensionality; a low-dimensional state space means the real-world
and training simulation would have a smaller gap than that of a
high-dimensional state space, thus leading to more stable and robust
RL weight selection agent since it has richer knowledge regarding the
real-world environment it operates in. Following this insight, vehicle
lateral tracking error et is used as input instead of the x-y position of
the vehicle, which, in theory, is boundless in its complexity;
conversely, et is much more tangible and bounded in its value. For the
same reason, polynomial curve is chosen in place of spline curve
when generating the path shape prompt because polynomial curve
requires less number of coefficients to define, allowing the RL agent
to explore in a lower-dimensional input space, thus increasing the
training efficiency significantly; polynomial fit is also shown to
capable of providing adequate fitting quality especially when the
geometry is simple-like the shape of a real-world road segment. The
polynomial fitting is done using Numpy [39] polyfit function;
experiments show that, when the horizon length H = 10 (meaning the
road segment contains H number of map waypoints), a second order
polynomial is sufficient in capturing the shape of the path segments.

Reward function for the RL pipeline is composed of the following:

r = rtr + rsteer (7)

where rtr is the reward for small lateral tracking error, and rsteer is to
reward smooth steering angle sequence; each term is defined in Eqn.
8.

rtr =


0.02

∥et∥+5·10−4 if et < ϵ

−2.5 ∥et∥ if et ≥ ϵ

(8a)

rsteer =


105 ∥2 · 10−4 −∆u∥ if ∆u ≤ 2 · 10−4

−200 if ∆u > 2 · 10−4

(8b)

where et is the vehicle lateral tracking error at time step t, and ϵ is the
threshold below which the RL agent will be awarded. In rtr , the
positive term is designed to be reciprocal function of the form
f(x) = 1

x+c
so the reward increases at a faster rate when it gets closer

to zero, and the constant c exists to avoid undefined value error. It
turns out that in order to guide the MPC to output smooth control
sequence u1:H , the rsteer term needs to dominate, and this turns out to
be a reasonable design choice such that both the tracking error and
smoothness converge to target performance as training progresses.

Multiprocessing Training To boost the training efficiency and the
utilization of Graphic Processing Unit (GPU), multiple independent
simulations are run in parallel. In single-thread training set-up, there
is only one active deep RL network, which is updated after a batch of
experience tuples (s, a, r, s′) are collected and the RL algorithm must
wait for the experience collection is completed; but multi-threaded
training can perform updates asynchronously, by using one global
network and multiple local networks. During training, each agent is
controlled by one local network to collect experience tuples in its own
independent simulation; and the global network can be updated as
soon as one of the local agent completes experience collection without
the need to wait for other agents to complete [40]. Moreover, the
parallel simulation set-up has also been used for experience collection
only where the experience buffer can be filled more quickly. Figure 2
shows the multi-threaded training structure utilized in this paper.

Figure 2: The multi-threaded training structure. n number of local agents work
in parallel to collect experiences from their own simulation environment in order
to perform global network update asynchronously or fill the global buffer more
efficiently; the local agent downloads the updated global network each time the
global network is updated.

Results

We performed two tests to validate the performance of the weight
selection RL model. First, the model is tested in simulation
environment, where the simulated vehicle is tasked with tracking a
series of recorded waypoints (coordinates of real road recorded by
vehicles with human drivers) and the performance is measured by the
following two criteria: its lateral tracking error and smoothness of the
MPC-generated steering angles; secondly, we deployed the RL weight
selection model on a real Lincoln MKZ vehicle and performed tests
on the testing track in Isuzu Technical Center of America, and
performance is evaluated using the same two benchmarks as in
simulation tests.

Simulation Test Here we present the simulation tests result. The tests
are run on four different maps, all from recorded waypoints of test
tracks and public roads. For simulation tests we tested the
performance of all three RL algorithms: DDPG, TD3, and PPO. We
also included a group of static weight parameters for comparing
purposes; this static set of weights come from our previous trials of
tuning the MPC, and it is chosen in order to: 1) investigate how
dynamic assignments of weight parameters impact the vehicle’s
lateral tracking performance; 2) gain insights for RL’s ability to tune a
controller by adjusting high-level hyper-parameters comparing against
human preliminary tuning.

As shown in Figure 3, the RL weight selection scheme attains
comparable or better performance in both lateral tracking error and
steering smoothness. It is to be observed that when the model has
good lateral tracking performance, the steering smoothness might be
sacrificed because the vehicle may adjust its bearing too frequently,
leading to vacillating steering angles; this is especially true for the
DDPG algorithm which has adequate lateral tracking on the Isuzu test
track (green line) but has rather unstable steering angle trajectory. The
overall best performing RL weight selection model is the PPO
algorithm, which achieves good balance between lateral tracking and
steering smoothness; the average lateral tracking error and the
steering smoothness of each RL algorithm alongside the map on
which it is tested are summarized in Table 1 and 2.
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Figure 3: Lateral tracking error and steering smoothness (the difference be-
tween consecutive steering angles) for simulated tests using four different real-
world waypoints maps.

Table 1: Lateral Tracking Errors (meter)

Beck
Highway

Isuzu
Track

P.G. P.G.
Oval

Baseline 0.125 0.404 0.0931 0.0427
DDPG 0.0533 0.157 0.0523 0.0313
TD3 0.0615 0.385 0.0786 0.0422
PPO 0.0987 0.301 0.0758 0.0377

Table 1 lists out the average lateral tracking error (each lateral error
data point is calculated at the end of a 22-waypoint segment) for each

RL algorithm tested on four maps in simulation.

Table 2: Steering Smoothness (degrees)

Beck
Highway

Isuzu
Track

P.G. P.G.
Oval

Baseline 0.133 0.384 0.0737 0.0404
DDPG 0.227 0.660 0.178 0.171
TD3 0.390 0.897 0.368 0.165
PPO 0.140 0.405 0.0826 0.0475

Table 2 lists out the average steer angle difference between
consecutive control inputs for each weight selection method on four

test maps.

We also provide here the value of each of the weight matrices of the
MPC objective during simulation test on Isuzu test track (the most
representative test with reasonable track length and variety of path
shapes) in Figure 4, 5, and 6

It can be observed that the value of steering smoothness weight
(Figure 6) is at all time steps nearly 100 times larger than the other
two. This is largely determined by the reward function design during
training, where the steering smoothness is rewarded a large positive
feedback to ensure that the RL-MPC puts the passenger comfort and
steering stability as its priority-this conforms to human driver
behavior since driver does not need to adjust its steering frequently
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Figure 4: The weight matrix Q for the lateral error term in MPC objective.

Figure 5: The weight matrix K for the lateral error term in MPC objective.

Figure 6: The weight matrix P for the lateral error term in MPC objective.

Figure 7: The testing track inside the Isuzu Technical Center of America facility.

Figure 8: The full-sized sedan used for the RL-MPC on-board testing; equipped
with drive-by-wire system, Polynav 2000P GNSS-inertial system, a Calmcar
front view camera, and a Dspace Autera computing unit.

when traveling on low-curvature road. This is reflected in the selection
of weight K and P , which is given relatively high value during
low-curvature road (Figure 5 6) to ensure the vehicle is traveling
smoothly in straight segments; RL algorithm seems to choose to
sacrifice the lateral tracking accuracy to keep steering smoothness
when the vehicle performs large angle turning by choosing relatively
lower weight Q (Figure 4) when the road curvature starts to increase.

On-board Testing The on-board testing of the weight selection
scheme is done on a real Lincoln MKZ vehicle. The vehicle is
modified so that its low level controller can communicate with the
host laptop via Robot Operating System (ROS). The RL model is run
on the host laptop along with the MPC, and then the computed
steering angle will be sent to the low level controller on the vehicle in
the form of ROS message; similarly, the states of the vehicle are sent
to the host laptop via ROS messages. The vehicle used is the same as
the one in our previous work [38], where the distances from the front
and rear axles to the vehicle’s center of gravity are 1.2m and 1.65m,
respectively; additionally, the vehicle has a full drive-by-wire system
that can communicate with the host computer via ROS, a Polynav
2000P GNSS-inertial system, a Calmcar front view camera, and a
Dspace Autera computing unit (Figure 8). The on-board test is carried
out on the test track in Isuzu Technical Center of America facility
(Figure 7).

The lateral tracking errors and the steering angles generated during
the on-board test using the PPO algorithm RL-MPC are shown. It can
be observed that the average lateral error in real-car test is larger than
the result in simulation test, and the steering commands generated are
also more aggressive than that in the simulation tests. One possible
explanation for this is that the modeling error in the MPC constraint is
magnified in on-board testing, and incorrect dynamics leads to
off-target predictions of the vehicle’s positions in the prediction
horizon, which is then propagated to the RL predicted weights;
consequently, the heading offset of the vehicle may be larger than the
MPC predicted, so it is forced to generate a higher than anticipated
steering angle to try to correct the vehicle’s orientation, thus the
aggressive steering command trajectory.
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Figure 9: The lateral tracking error obtained during on-board testing. The ver-
tical axis represents the lateral error, and the x y axis represents the location of
vehicle when the lateral error is calculated.

Figure 10: The steer angles of the vehicle during on-board testing. The x axis
is the index of the waypoint the vehicle is passing through, and y axis is the
corresponding steering angle at that waypoint.

Conclusion

In this paper we explored the possibility of applying reinforcement
learning (RL) algorithms to improve the lateral controller on
autonomous vehicle. We propose to use RL to tune the high-level
decision parameters of the MPC-the weight matrices in MPC’s
objective so as to make the MPC more robust to trajectories of various
shapes. The RL-MPC show promising lateral tracking ability in the
simulated environment where the major difference from the real world
would be the vehicle dynamics model, and RL-MPC, in simulated
environment, obtain better performance than MPC that uses
hand-tuned static weight matrices; the RL-MPC also obtains
reasonable performance in real-world on-board testing, where the
ROS communication framework and MPC solver cause latency in the
control pipeline that hinders its performances. Next step would be to
work on the domain randomization of the RL training so that it is
more capable of handling unseen environments in the real-world and
more robust against system noises, communication lags, and vehicle
dynamics modeling inaccuracies.
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